skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Fangyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 18, 2025
  2. Acidophilic algae-based microrobots swim in extreme acid and operate in harsh GI environment. 
    more » « less
  3. Abstract There has been considerable interest in developing synthetic micromotors with biofunctional, versatile, and adaptive capabilities for biomedical applications. In this perspective, cell membrane‐functionalized micromotors emerge as an attractive platform. This new class of micromotors demonstrates enhanced propulsion and compelling performance in complex biological environments, making them suitable for various in vivo applications, including drug delivery, detoxification, immune modulation, and phototherapy. This article reviews various proof‐of‐concept studies based on different micromotor designs and cell membrane coatings in these areas. The review focuses on the motor structure and performance relationship and highlights how cell membrane functionalization overcomes the obstacles faced by traditional synthetic micromotors while imparting them with unique capabilities. Overall, the cell membrane‐functionalized micromotors are expected to advance micromotor research and facilitate its translation towards practical uses. 
    more » « less
  4. Abstract Fe–N–C single‐atom catalysts (SACs) exhibit excellent peroxidase (POD)‐like catalytic activity, owing to their well‐defined isolated iron active sites on the carbon substrate, which effectively mimic the structure of natural peroxidase's active center. To further meet the requirements of diverse biosensing applications, SAC POD‐like activity still needs to be continuously enhanced. Herein, a phosphorus (P) heteroatom is introduced to boost the POD‐like activity of Fe–N–C SACs. A 1D carbon nanowire (FeNCP/NW) catalyst with enriched Fe–N4active sites is designed and synthesized, and P atoms are doped in the carbon matrix to affect the Fe center through long‐range interaction. The experimental results show that the P‐doping process can boost the POD‐like activity more than the non‐P‐doped one, with excellent selectivity and stability. The mechanism analysis results show that the introduction of P into SAC can greatly enhance POD‐like activity initially, but its effect becomes insignificant with increasing amount of P. As a proof of concept, FeNCP/NW is employed in an enzyme cascade platform for highly sensitive colorimetric detection of the neurotransmitter acetylcholine. 
    more » « less